Dieter Becher^{1a)}, Shelia D. Sample^{1b)} und Carl Djerassi

Massenspektrometrie und ihre Anwendung auf strukturelle und stereochemische Probleme, CVII²⁾

Das Fragmentierungsverhalten von Semicarbazonen

Aus dem Department of Chemistry, Stanford University, Stanford, California, USA

(Eingegangen am 3. Februar 1966)

In den Spektren von Semicarbazonen aliphatischer Aldehyde und Ketone überlagert sich den von den Carbonylverbindungen her bekannten Fragmentierungen ein Abbau der Semicarbazidseitenkette. Ionisierung des Molekül-Ions erfolgt im Wesentlichen an dem Stickstoffatom, das die Stelle des Carbonylsauerstoffs vertritt. Wichtige Abbauschritte sind α -Spaltung, die unter Wanderung eines γ -Wasserstoffatoms ablaufende β -Spaltung (McLafferty-Umlagerung) und γ -Spaltung, wie durch Analyse wichtiger Spitzen durch Hochauflösung und Deuterium-Markierung nachgewiesen wird. Die bevorzugte Übertragung eines sekundären Wasserstoffatoms im Zuge der McLafferty-Umlagerung, die in den Spektren der Oxime nicht beobachtet werden konnte, wird hier wieder aufgefunden. Dagegen läßt sich keine Wanderung einer Methylgruppe nachweisen. Alle Proben wurden mit einem direkten Einlaßsystem in die Ionenquelle eingeführt; die Spektren deuten keine thermischen Zersetzungsreaktionen an, wie sie bei der Verwendung eines geheizten Einlaßsystems beobachtet worden sind.

Die Fähigkeit einer funktionellen Gruppe, das Fragmentierungsverhalten eines Moleküls unter Elektronenbeschuß zu bestimmen, hängt von dem Ausmaß ab, in dem Ionisierung und Ladungsstabilisierung an ihr erfolgen³⁾.

Daß die Carbonylgruppe nur in begrenztem Maße eine solche dirigierende Wirkung auszuüben vermag, ist besonders an Steroidketonen deutlich geworden⁴). Hingegen ist eine Zuordnung von Struktur und Fragmentierung in den zugehörigen Äthylenacetalen und Dimethylaminoderivaten möglich⁵). Wir haben unsere Untersuchungen über den Zusammenhang zwischen Ladungsstabilisierung und Fragmentierung an Carbonylderivaten kürzlich auf Nitrophenylhydrazone⁶), Oxime⁷) und Azomethine⁸, ausgedehnt. Nitrophenylhydrazone⁶ aliphatischer Aldehyde und Ketone geben intensive Peaks der Molekül-Jonen. Man kann die

Ia) NATO-Postdoctoral Research Fellow 1965-1966, jetzige Anschrift: Institut de Chimie des Substances Naturelles, Gif-sur-Yvette (S.-Z.-O.), Frankreich. ^{1b)} National Science Foundation Predoctoral Fellow, 1963-1965, National Institutes of Health Predoctoral Fellow 1965-1966.

²⁾ CVI. Mitteil.: P. Brown und C. Djerassi, J. Amer. chem. Soc., im Druck.

³⁾ Vgl. z. B. *H. Budzikiewicz, C. Djerassi* und *D. H. Williams*, Interpretation of Mass Spectra of Organic Compounds, Holden-Day, San Francisco 1964.

⁴⁾ H. Budzikiewicz, C. Djerassi und D. H. Williams, Structure Elucidation of Natural Products by Mass Spectrometry, Band II, Kapitel 20, Holden-Day, San Francisco 1964.

⁵⁾ 1. c.⁴⁾, Kapitel 18.

⁶⁾ C. Djerassi und S. D. Sample, Nature [London] 208, 1314 (1965).

⁷⁾ D. Goldsmith, D. Becher, S. D. Sample und C. Djerassi, Tetrahedron [London], im Druck.

⁸⁾ M. Fischer und C. Djerassi, Chem. Ber. 99, 1541 (1966).

positive Ladung in ihnen an der Nitrogruppe, im aromatischen Ringsystem oder an den Stickstoffatomen der Hydrazinseitenkette lokalisiert annehmen. Für den letztgenannten Ort spricht die McLafferty-Umlagerung^{9, 10}), die man z. B. in n-Valeraldehyd-2.4-dinitrophenylhydrazon beobachtet. Hervorzuheben ist, daß die Übertragung eines γ -H-Atoms zum Stickstoff nur von einem sekundären C-Atom her erfolgen kann; im Spektrum von n-Butyraldehyd-2.4-dinitrophenylhydrazon fehlt der durch Verlust von Äthylen vom Molekül-Ion entstandene Peak. Verlust von 35 Masseneinheiten in einem Schritt vom Molekül-Ion, durch Hochauflösung als H₂O + OH ausgewiesen und durch ein metastabiles Ion unterstützt, deutet dagegen darauf hin, daß die Ionisierung des Moleküls auch an der Nitrogruppe erfolgen kann.

In den Oximen⁷⁾ wird die Ablösung des ersten Elektrons vom Stickstoff durch das benachbarte elektroaffine Sauerstoffatom erschwert. Diese Möglichkeit der Ladungsstabilisierung an zwei verschiedenen Heteroatomen ist wohl als Hauptgrund dafür anzusehen, daß das Fragmentierungsbild der Oxime das der Carbonylverbindungen an Klarheit nicht übertrifft.

Am einfachsten zu interpretieren sind die Spektren der Azomethine⁸⁾, da sie nur ein Heteroatom enthalten. Ionisierung am Stickstoff erfordert einen geringeren Energieaufwand als am Sauerstoff ^{5, 11-13}. In den Spektren der Azomethine überwiegen daher stickstoffhaltige Fragmente die Kohlenwasserstoffbruchstücke. Der entscheidende Nachteil der Azomethine im Hinblick auf ihre Verwendung zur Strukturanalyse ist ihre geringe Beständigkeit, die die Aufnahme der Massenspektren unmittelbar nach der Reinigung erfordert.

In der vorliegenden Arbeit wird das Fragmentierungsverhalten von Semicarbazonen untersucht. Für die Ionisierung unter Elektronenbeschuß stehen im Semicarbazidrest vier verschiedene Heteroatome zur Verfügung. Man darf nach dem oben Gesagten erwarten, daß die Ionisierung am leichtesten an dem Stickstoffatom erfolgen wird, das durch die Doppelbindung mit der Kohlenwasserstoffkette verknüpft ist. Inwieweit die anderen Heteroatome die positive Ladung zu stabilisieren vermögen, wird im folgenden zu prüfen sein.

1. Semicarbazone von Aldehyden

Ablösung eines Elektrons am Sauerstoffatom hat in aliphatischen Aldehyden^{14,15} hauptsächlich α - oder β -Spaltung unter Wanderung eines γ -ständigen H-Atoms (McLafferty-Umlagerung^{9,10}) zur Folge. Lokalisiert man in Analogie in den Semicarbazonen von n-Butyraldehyd (1) und n-Valeraldehyd (2) die positive Ladung am Brückenstickstoff, so kann man diese Spaltungsreaktionen unter Berücksichtigung der Semicarbazidkette hier nach zwei Seiten hin formulieren (Schema 1). Die Spektren von 1 (Abbild. 1) und 2 (Abbild. 2), Elementaranalyse der wesentlichen Peaks im Spektrum von 1 durch Hochauflösung (siehe Tab. 1) und metastabile Ionen (siehe Tab. 2) bestätigen diese Vorhersagen.

⁹⁾ F. W. McLafferty, Analytic. Chem. 31, 82 (1959).

¹⁰⁾ Eine Diskussion über die strukturellen Voraussetzungen der McLafferty-Umlagerung findet sich bei *H. Budzikiewicz*, *C. Fenselau* und *C. Djerassi*, Tetrahedron [London], im Druck.

Z. Pelah, D. H. Williams, H. Budzikiewicz und C. Djerassi, J. Amer. chem. Soc. 87, 574 (1965).

¹²⁾ Siehe l. c.³⁾, Kapitel 4.

¹³⁾ K. Biemann, Mass Spectrometry, Kapitel 3, McGraw-Hill, New York 1962.

^{14) 1.} c. 3), Kapitel 1.

¹⁵⁾ J. A. Gilpin und F. W. McLafferty, Analytic. Chem. 29, 934 (1956).

 α -Spaltung unter Verlust des Alkylrestes (a, m/e 86) macht 1.5% der Gesamtionisation (Σ_{40}) im Spektrum von 1 bzw. 1.8% im Spektrum von 2 aus; begünstigter ist in beiden Fällen der Verlust eines H₂N-CO-NH-Radikals, wobei sich wahrscheinlich ein protoniertes Nitril-Ion b (m/e 70, 5.8% Σ_{40}) bzw. b' (m/e 84, 4.1% Σ_{40}) ausbildet. Die McLafferty-Umlagerung^{9,10}, d. h. die Eliminierung eines neutralen Olefinmoleküls unter β -Spaltung, verlangt die Übertragung eines γ -ständigen H-Atoms an den die Ladung tragenden Stickstoff. Daß die Ablösung eines sekundären Wasserstoffatoms gegenüber der eines primären energetisch begünstigt ist, ist kürzlich an unsymmetrisch substituierten aliphatischen Ketonen gezeigt worden¹⁰. Von den bisher untersuchten Carbonylderivaten befolgen die Azomethine⁸) und Nitrophenylhydrazone⁶) diese Regel; lediglich für die Oxime⁷) konnte keine bevorzugte Ablösung von sekundärem Wasserstoff festgestellt werden.

Die Spektren der Semicarbazone 1 und 2 schließen sich an die erste Gruppe an; die höhere Aktivierungsenergie, die für die Wanderung eines primären Wasserstoffatoms aufgebracht werden muß, bedingt, daß das Ion c $(m/e \ 101)$ in Abbild. 1 nur mit 2.2% zur Gesamtionisation beiträgt. Im Spektrum von 2 ist der Beitrag von c

m/e	Zusammen- setzung	%	m/e	Zusammen- setzung	%
101	C ₃ H ₇ N ₃ O	100	61	CH ₅ N ₂ O	100
86	C ₂ H ₄ N ₃ O	70	60	CH_4N_2O	100
	$C_4H_{10}N_2$	30	58	$C_2H_6N_2$	100
71	$C_3H_7N_2$	>90	57	C ₃ H ₅ O	30
70	C ₄ H ₈ N	100		$C_2H_5N_2$	70

Tab. 1. Zusammensetzung starker Peaks im Spektrum von n-Butyraldehyd-semicarbazon (1)

Tab. 2. Metastabile Ionen in den Massenspektren von n-Butyraldehyd- (1) und n-Valeraldehyd-semicarbazon (2)

n-But	yraldehyd-semio	arbazon (1)	n-Valeraldehyd-semicarbazon (2)			
Berechnet	Gefunden	Übergang	Berechnet	Gefunden	Übergang	
100.7	100.7	129-114	71.3	71.3	143-101	
57.3	57.3	1 29 - 86	51.7	51.7	143- 86	
38.0	38.0	129 - 70	49.3	49.3	143 - 84	
33.3	33.3	101 - 58	35.6	35.7	101-60	
28.8	28.8	129-61	33.3	33.3	101 - 58	
27.9	27.4	129 - 60	26.0	26.0	143- 61	
			25.2	25.2	143-60	

dagegen auf 16.6% Σ_{40} angestiegen. Daß sich nur das γ -H-Atom an der Bildung von c beteiligt, wird bei den Semicarbazonen von Ketonen (siehe unten) nachgewiesen werden.

Übertragung eines γ -H-Atoms vom endständigen Stickstoff der Semicarbazidseitenkette unter Verlust von Isocyansäure erfolgt als erster Fragmentierungsschritt nur in untergeordnetem Maße. Die Ionen d (m/e 86) bzw. d' (m/e 100) machen in den Spektren von 1 und 2 nur 0.7 bzw. 0.8% der Gesamtionisation aus. Vermutlich ist die Eliminierung des unpolaren Olefins vom Molekül-Ion kinetisch begünstigt; denn Isocyansäure wird leicht in einem zweiten sechsgliedrigen Übergang ($\mathbf{c} \rightarrow \mathbf{e}$) vom Produkt der ersten McLafferty-Umlagerung verloren, wobei \mathbf{e} (m/e 58) entsteht. \mathbf{e} hat noch ungerade Elektronenzahl; es stabilisiert sich teilweise unter Ablösung eines Protons, wobei der positive Stickstoff seine Oktettlücke auffüllt (\mathbf{f} , m/e 57).

 γ -Spaltung, d. h. der Verlust eines Methyl-Radikals von 1 bzw. eines Äthyl-Radikals von 2, ruft in beiden Spektren die Spitze bei m/e 114 (g) hervor. Warum die Auflösung der γ -Bindung gegenüber einer β -, δ -, ε - und ρ -Spaltung energetisch begünstigt ist, ist bereits im Zusammenhang mit den Oxim-7) und Azomethinspektren⁸⁾ diskutiert worden. In Analogie hierzu kann man g als Azacyclobutenderivat oder als Fragment der tautomeren Enaminform des Molekül-Ions schreiben. In beiden Fällen hat das resultierende Ion gerade Elektronenzahl. g verliert leicht Isocyansäure; für das resultierende Ion h (m/e 71) bieten sich entsprechend wieder zwei Schreibweisen an.

Das wichtigste Spaltstück des Spektrums (Abbild. 1) von n-Butyraldehyd-semicarbazon (1) ist m/e 60 (i) mit 15.6% der Gesamtionisation. Seine Analyse durch Hochauflösung ergibt CH₄N₂O (Tab. 1). Ein metastabiles Ion bei m/e 27.4 (Tab. 2) zeigt an, daß dieses Harnstoff-Ion direkt aus dem Molekül-Ion gebildet werden kann. Als einfachster Weg hierfür erscheint die Auflösung der Bindung zwischen den beiden Hydrazinstickstoffatomen unter gleichzeitiger Übertragung des Aldehyd-H-Atoms aus der Alkylkette:

Das Brückenstickstoffatom wird in diesem sechsgliedrigen Übergang als Teil eines neutralen Nitrils verloren und kann daher nicht mehr, wie bei allen bisher besprochenen Fragmentierungen, Träger der positiven Ladung sein. Ob Ionisierung am Carbonylsauerstoff erfolgt, oder ob das erste Elektron am im Ion verbleibenden Hydrazinstickstoff abgelöst wird, kann nur auf Grund von Ionisierungspotentialmessungen entschieden werden. Im Spektrum (Abbild. 2) von 2 ist der Anteil von i an der Gesamtionisation auf 7.8% abgesunken. Die energetische Begünstigung der McLafferty-Umlagerung, die sich im Anwachsen der Fragmente c und e ausdrückt, macht diese Beobachtung verständlich. Sie erklärt auch, warum i jetzt zum Teil aus c unter Verlust von Acetonitril entstehen kann, worauf ein metastabiles Ion bei m/e 35.7 hinweist (Tab. 2).

Für m/e 61 (j) liefert die Analyse durch Hochauflösung die Zusammensetzung CH₅N₂O. Metastabile Ionen in den Spektren von 1 und 2 verlangen seine Bildung zumindest teilweise aus dem Molekül-Ion; vermutlich wiederum unter Verlust des

Brückenstickstoffatoms. Zwei Wasserstoffatome müssen jetzt vom Alkylrest an das Ion übertragen werden, was sich folgendermaßen formulieren läßt:

Wiederum erscheint die Lokalisierung der positiven Ladung am Carbonylsauerstoffatom oder am im Ion verbleibenden Stickstoff für den obigen Mechanismus gleich günstig und unterstreicht den Einfluß, den diese Heteroatome auf das Fragmentierungsbild von Semicarbazonen aliphatischer Aldehyde haben.

2. Semicarbazone von acyclischen Ketonen

Die Entstehung der Ionen i und j in den Spektren von 1 und 2 ist an die Voraussetzung geknüpft, daß das Wasserstoffatom der ehemaligen Aldehydgruppe an die Semicarbazidseitenkette übertragen werden kann. Substituiert man dieses Wasserstoffatom durch einen Alkylrest, so sollten i und j nicht mehr in nennenswertem Maße zur Gesamtionisation beitragen. Die Spektren (Abbild. 3 und 5) von Di-n-propylketon-semicarbazon (3) und Di-n-butyl-keton-semicarbazon (5) bestätigen diese Vorhersage. Alle wesentlichen Fragmente lassen sich in ihnen mit der Annahme deuten, daß die Ablösung des ersten Elektrons am Brückenstickstoff erfolgt. α -Spaltung, McLafferty-Umlagerung und γ -Spaltung konkurrieren als Abbauschritte in dem Bestreben, die Oktettlücke am positiv geladenen Stickstoff aufzufüllen.

 α -Spaltung (siehe Schema 2) als erster Abbauschritt ergibt im Spektrum von 3 die Ionen bei m/e 128 (k) bzw. m/e 112 (l). k verliert Isocyansäure (n, m/e 85). Aus räumlichen Gründen wird dabei wahrscheinlich zunächst eines der Elektronenpaare der C = N-Dreifachbindung entkoppelt ¹⁶). Verlust von Ammoniak von k ergibt m (m/e 111). Das koordinativ stark ungesättigte Ion 1 stabilisiert sich unter Eliminierung von Propylen (o, m/e 70). k, l, m, n und o finden sich, verschoben um die entsprechenden Masseneinheiten, im Spektrum (Abbild. 4) von [$\gamma \cdot \gamma \cdot \gamma' \cdot \gamma' \cdot \gamma' \cdot \gamma' \cdot q' \cdot d_6$]-Di-n-propyl-keton-semicarbazon (4) mit annähernd den gleichen Intensitäten (Tab. 3) wieder (k', l', m', n' und o' in Schema 2). Das Gleiche gilt für die γ -Spaltung, bei der sich vermutlich wieder im ersten Schritt ein viergliedriger Ring ausbildet (p, m/e 156 bzw. p', m/e 159). In Folgeschritten wird dann entweder Isocyansäure (q, m/e 113 bzw. q', m/e 116) oder Ammoniak (r, m/e 139 bzw. r', m/e 142) und Isocyansäure (s, m/e 96 bzw. s', m/e 99) verloren.

Abbild. 3. Massenspektrum von Di-n-propyl-keton-semicarbazon (3) Abbild. 4. Massenspektrum von [γ . γ . γ' . γ' . γ' . γ' . d_6]Di-n-propyl-keton-semicarbazon (4) Abbild. 5. Massenspektrum von Di-n-butyl-keton-semicarbazon (5)

¹⁶⁾ Siehe l. c.³⁾, S. 114.

In 3 kann ein γ -H-Atom zweimal vom Propylrest an den die positive Ladung tragenden Stickstoff unter β -Spaltung und Eliminierung von Äthylen übertragen werden; diese doppelte McLafferty-Umlagerung ist analog zum Fragmentierungsbild des zugrundeliegenden Di-n-propylketons^{10,17} (siehe Schema 2). Das Semicarbazon kann darüber hinaus in einem dritten sechsgliedrigen Übergangszustand Isocyansäure verlieren. Je nach der Reihenfolge der Fragmentierungsschritte entstehen so die Ionen t (*m/e* 143), u (*m/e* 100), v (*m/e* 115) und w (*m/e* 72). Metastabile Ionen unterstützen diese Spaltungsreaktionen (siehe Tab. 4). Analyse des Peaks bei *m/e* 100 durch

17) A. G. Sharkey jr., J. L. Shultz und R. A. Friedel, Analytic. Chem. 28, 934 (1956).

Schema 2 (Fortsetzung)

Hochauflösung zeigt, daß er nur zu 50% aus dem Ion u besteht. Er bildet sich zur anderen Hälfte aus v durch Verlust einer Methylgruppe. Es entsteht das Ion x, das im Spektrum von 4 nach x' (m/e 101) verschoben ist. x bzw. x' verlieren anschließend Isocyansäure unter Bildung von y (m/e 57) bzw. y' (m/e 58).

Im Zuge der ersten McLafferty-Umlagerung $(3 \rightarrow t)$ wird ausschließlich das γ -H-Atom an den positiv geladenen Stickstoff übertragen. t (m/e 143) ist im Spektrum von 4 vollständig nach t' (m/e 147) verschoben. Die Analyse der Wasserstoffumlagerungen, die zu den Ionen v (m/e 115), w (m/e 72) und u (m/e 100) führen, ist wegen der Vielzahl der Spitzen in den entsprechenden Massenbereichen von 4 schwierig. Die Peaks bei v' (m/e 117), w' (m/e 74) und u' (m/e 104) zeigen, daß sich das γ -ständige H-Atom auch an der Bildung dieser Ionen wesentlich beteiligt. Daß die Ablösung eines sekundären Wasserstoffatoms wiederum leichter erfolgt als die eines primären, wird deutlich, wenn man das Spektrum von 3 mit dem (Abbild. 5) seines nächst höheren Homologen, Di-n-butyl-keton-semicarbazon (5) vergleicht. Die Spitzen, die in ihm von α -Spaltung (k", m/e 142 und 1", m/e 140) oder γ -Spaltung (p", m/e 170) herrühren, treten deutlich gegenüber den McLafferty-Umlagerungsprodukten t" (m/e 157), v (m/e 115) und w (m/e 72) zurück (vgl. Tab. 5). Bemerkenswert ist die Stabilität von m/e 100, dessen Analyse durch Hochauflösung jetzt zu 100% x ergibt. Ein metastabiles Ion bei 87.0 ($100^{2}/115 = 87.0$) beweist, daß es wie im Spektrum von 3 durch Verlust einer Methylgruppe von v entsteht. Im Spektrum (nicht wiedergegeben) von $[\gamma, \gamma, \gamma', \gamma', \gamma']$ bi-n-butyl-keton-semicarbazon (6) ist x daher vollständig zu x' verschoben. Die übrigen oben diskutierten Peaks zeigen die erwarteten Massenzahländerungen.

m/e	Zusammensetzung	°/0	Inten- sität %Σ40	in 4 verschoben nach <i>m/e</i>	% Σ ₄₀	-
156	_	_	1.1	159	1.7	
143	C ₆ H ₁₃ N ₃ O	100	2.9	147	3.0	
139	$C_7H_{11}N_2O$	100	0.6	142	0.8	
128	_	_	5.4	131	6.0	
115	C4H9N3O	100	4.6	117	1.7	
113	$C_6H_{13}N_2$	>90	2.4	116	2.8	
112	$C_7H_{14}N$	>90	1.3	118	1.4	
111	C5H7N2O C6H11N2 C7H13N	85 10 5	1.0 	114 	1.5	
100 96	C ₃ H ₆ N ₃ O C ₅ H ₁₂ N ₂ C ₆ H ₁₀ N	50 50 100	1.8 1.8 1.4	101 104 99	1.5 1.0 1.2	
85	C4H9N2 C3H7N3 C5H11N	60 15 15	1.9 — —	88 	2.5	
72	$C_3H_8N_2$	100	9.3	74	4.6	
70	C ₄ H ₈ N	100	3.6	73	4.1	
57	-	_	2.0	58	3.0	
41	C ₂ H ₃ N	25	2.7			
	C ₃ H ₅	75	8.2		_	

Tab. 3. Zusammensetzung starker Peaks im Spektrum von Di-n-propyl-keton-semicarbazon (3)

Tab. 4. Metastabile Ionen im Spektrum von Di-n-propyl-keton-semicarbazon (3)		Peaks im Spektrum von Di-n-butyl- keton-semicarbazon (5)			
Berechnet	Gefunden	Übergang	m/e	Zusammensetzung	%
123.8	123.8	156-139	170	C8H16N3O	100
119.6	119.6	171-143	157	$C_7H_{15}N_3O$	100
95.8	96.0	171-128	142	$C_6H_{12}N_3O$	100
92.5	92.5	143-115	140	$C_9H_{18}N$	85
87.0	87.0	115-100		$C_7H_{12}N_2O$	15
81.9	81.9	156-113	115	C ₄ H ₉ N ₃ O	100
70.0	70.0	143-100	100	$C_3H_6N_3O$	100
51.8	51.8	100-72	72	$C_3H_8N_2$	100
45.1	45.1	115 - 72	41	C ₃ H ₅	85
				C_2H_3N	15

3. Semicarbazone cyclischer Ketone

Übertragung eines γ -Wasserstoffatoms verbunden mit einer Spaltung der zum ladungstragenden Brückenstickstoff β -ständigen Bindung kann in den Semicarbazonen cyclischer Ketone^{14, 18}) nur dann zu Fragmentierungen führen, wenn sie in der Semicarbazidseitenkette abläuft. Im Spektrum (Abbild. 6) von Cyclopentanon-semicarbazon (7) ist diese Eliminierung von Isocyansäure der wichtigste Abbauschritt (z, m/e 98). z stabilisiert sich in erster Linie unter Verlust eines Protons zum Ion aa (m/e 97). Dieser Übergang wird durch ein metastabiles Ion bei 96.0 (972/98 = 96.0) unterstützt und ist offenbar energetisch sehr begünstigt. Daneben kann die koordinative Absättigung des die Ladung tragenden Stickstoffatoms durch α -Spaltung, Wasserstoffwanderung unter Ausbildung eines resonanzstabilisierten Ions und anschließenden Verlust eines Äthylradikals erfolgen, wobei das konjugierte Ion **bb** (m/e 69) entsteht.

Ganz auf die gleiche Weise kann eine Äthylgruppe direkt vom Molekül-Ion zu cc verloren werden.

 ¹⁸a) P. Natalis, Bull. Soc. chim. Belges 67, 599 (1958); 18b) J. H. Beynon, R. A. Saunders und A. E. Williams, Appl. Spectroscopy 14, 95 (1960); 18c) J. Seibl und T. Gäumann, Z. analyt. Chem. 197, 33 (1963); Helv. chim. Acta 46, 2857 (1963); 18d) D. H. Williams, H. Budzikiewicz, Z. Pelah und C. Djerassi, Mh. Chem. 95, 166 (1964).

Tab. 5. Zusammensetzung wesentlicher

 α -Spaltung in der Seitenkette, wie sie oben für die Semicarbazone von Aldehyden und acyclischen Ketonen beschrieben wurde, resultiert in **dd** (*m/e* 82), Verlust von Ammoniak vom Molekül-Ion in **ee** (*m/e* 124).

Eine Parallele zu den Oximspektren⁷⁾ findet sich in dem Peak bei m/e 67 (ff), dessen Analyse durch Hochauflösung die Zusammensetzung C₅H₇ ergibt (Tab. 6). ff fehlt im Spektrum des entsprechenden Azomethins⁸⁾. Die Frage nach der Herkunft des Wasserstoffatoms, das zusätzlich zur Seitenkette des Cyclopentanonringes verloren werden muß, ist bei den Oximen⁷⁾ diskutiert worden. Im Spektrum (Abbild. 7) von [2.2.5.5-d₄]Cyclopentanon-semicarbazon (8) ist ff zum überwiegenden Teil nach ff' (m/e 71) verschoben, was auf den bevorzugten Verlust eines β -H-Atoms hindeutet. Die Ionen z (m/e 98), aa (m/e 97), bb (m/e 69), cc (m/e 112), dd (m/e 82) und ee (m/e 124) finden sich im Spektrum von 8 im wesentlichen bei z' (m/e 102), aa' (m/e 101), bb' (m/e 70), cc' (m/e 113), dd' (m/e 86) und ee' (m/e 128) wieder und bestätigen damit die oben formulierten Bildungswege für diese Spitzen.

m/e	Zusammensetzung	%	im Spektrum von 8 ver- schoben nach <i>m/e</i>
124	C ₆ H ₈ N ₂ O	100	128
112	C ₄ H ₆ N ₃ O	100	113
98	$C_5H_{10}N_2$	100	102
97	$C_5H_9N_2$	100	101
87	$C_3H_7N_2O$	100	89
83	$C_4H_7N_2$ C_5H_9N	70 30	
82	C5H8N	100	86
81	C5H7N	100	85
80	C₅H ₆ N	100	84
69	C3H5N2 C5H9 C4H7N	70 20 10	70
67	C5H7	100	71

Tab. 6. Zusammensetzung wesentlicher Peaks im Spektrum von
Cyclopentanon-semicarbazon (7)

Aus der Enaminform von 7 heraus läßt sich die Bildung von gg (m/e 81) verstehen. gg stabilisiert sich durch α -Spaltung und Verlust eines Protons, (**hh**, m/e 80), wie ein metastabiles Ion bei m/e 79.0 ($80^2/81 = 79.0$) anzeigt. Daß in beiden Fragmentierungsschritten zumindest teilweise je ein β -Proton eliminiert wird, beweisen Peaks bei m/e 85 (gg') und 84 (**hh**') im Spektrum von 8.

Nicht in die Reihe der besprochenen Fragmentierungen läßt sich dagegen der Peak bei m/e 87 (jj) einfügen. Analyse durch Hochauflösung (siehe Tab. 6) ergibt für ihn die Zusammensetzung C₃H₇N₂O. Verlangt man, daß die Ionisierung auch für diesen Abbau am Brückenstickstoffatom erfolgt, so müssen an das zu bildende Ion jj vier Protonen vom Rest des Moleküls übertragen werden. Ein metastabiles Ion bei m/e 53.7 (87²/141 = 53.7) verlangt, daß diese Umlagerungen in einem Schritt und gleichzeitig mit der Ablösung der endständigen Aminogruppe der Semicarbazidseitenkette ablaufen. Eine solche Fragmentierung ist unwahrscheinlich. Denkt man sich dagegen den Carbonylsauerstoff als Träger der positiven Ladung, so läßt sich folgender Mechanismus für die Bildung von jj schreiben:

Zunächst wird wieder die zur exocyclischen Doppelbindung α -ständige C--C-Bindung des Cyclopentanringes gelöst. Das ungepaarte Elektron an C-2 paart sich dem einsamen Elektron am Carbonylsauerstoff; gleichzeitig wird die Bindung zwischen den beiden Hydrazinstickstoffatomen gelöst. ii stabilisiert sich unter Wasserstoffwanderung zu dem konjugierten Ion jj. Daß in jj tatsächlich zwei α -H-Atome inkorporiert sind, beweist seine Verschiebung nach m/e 89 (jj') im Spektrum (Abbild. 7) von 8.

Die Spektren (Abbild. 8 und 9) von Cyclohexanon-semicarbazon (9) und 4-Methylcyclohexanon-semicarbazon (10) wiederholen im Wesentlichen die für 7 diskutierten Abbauschritte. jj findet sich in beiden Spektren wieder, wenn auch mit etwas geringerer Intensität. Seine Bildung aus dem Molekül-Ion wird in beiden Spektren durch metastabile Ionen belegt.

Die Ionen kk bzw. kk' (m/e 96 bzw. 110) und ll (m/e 112) in den Spektren von 9 und 10 entstehen durch α -Spaltung (siehe Schema 3) als ersten Fragmentierungsschritt. Hierbei wird wieder entweder der H₂N-CO-NH-Rest aus der Semicarbazidkette verloren (kk bzw. kk') oder die der C=N-Bindung benachbarte C-C-Bindung des Cyclohexanringes geöffnet, worauf Wanderung eines α -H-Atoms und Alkylgruppenabspaltung in beiden Fällen ll (m/e 112) ergibt.

Durch Verlust von Isocyansäure aus der Seitenkette in einem sechsgliedrigen Übergang entsteht die zweite Hälfte von m/e 112 im Spektrum von 9 (mm); im Spektrum von 10 ist dieser Anteil nach m/e 126 (mm') verschoben (siehe Schema 3). mm und mm' können sich außer durch Verlust von einem Proton (nn bzw. nn', m/e 111 bzw. m/e 125) oder durch α -Spaltung, Wasserstoffwanderung und Alkylgruppenablösung (oo, m/e 69) noch durch Eliminierung von Äthylen bzw. Propylen stabilisieren. Metastabile Ionen bei 63.1 (842/112 = 63.0) und 56.0 (842/126 = 56.0) belegen diese Übergänge; die Zusammensetzung von **pp** (m/e 84) ist in beiden Spektren durch

Chemische Berichte Jahrg. 99

Hochauflösung sichergestellt worden (Tab. 7). Schreibt man **pp** als viergliedrigen Ring, dessen besondere Stabilität in den Spektren der Aldo- und Ketosemicarbazone herausgestellt worden ist, so wird verständlich, warum diese Fragmentierung nicht in nennenswertem Maße für Cyclopentanon-semicarbazon (7) nachgewiesen werden kann. **pp** verliert leicht ein Proton zu **qq** (m/e 83).

Bemerkenswert ist schließlich der starke Verlust von Propylen im Spektrum (Abbild. 9) von 10, der zu rr (m/e 127) führt. C₃H₆ kann vom Molekül-Ion nur unter Einbeziehung von C-4 des Cyclohexanringes verloren werden. Beginnt man mit einer β -Spaltung, so läßt sich der nachfolgende Fragmentierungsweg für die Bildung von rr schreiben. rr findet sich auch im Spektrum von 9, allerdings mit viel geringerer Intensität. Ammoniak wird von beiden Molekül-Ionen verloren (ss bzw. ss', m/e 138 bzw. m/e 152).

Tab. 7. Zusammensetzung wesentlicher Peaks in den Spektren von Cyclohexanon-semicarbazon (9) und 4-Methyl-cyclohexanon-semicarbazon (10)

Cyclohexanon-semicarbazon (9)			4-Methyl-cyclohexanon-semicarbazon (10)		
m/e	Zusammen- setzung	%	m/e	Zusammen- setzung	%
138	C7H10N2O	100	127	C5H9N3O	80
112	C ₄ H ₆ N ₃ O	50		C ₇ H ₁₃ NO	20
	$C_6H_{12}N_2$	50	126	$C_7H_{14}N_2$	80
111	$C_{6}H_{11}N_{2}$	100		C ₅ H ₈ N ₃ O	20
84	$C_4H_8N_2$	>90	125	$C_7H_{13}N_2$	100
83	$C_4H_7N_2$	>90	87	$C_3H_7N_2$	100
81	C ₆ H ₉	100	83	$C_4H_7N_2$	100
69	$C_3H_5N_2$	70	81	C ₆ H ₉	75
	C5H9	20		C ₅ H ₇ N	20
	C_4H_7N	10		$C_4H_5N_2$	5
67	C ₅ H ₇	60			
	C ₄ H ₅ N	40			

Zusammenfassung

Bei den Semicarbazonen aliphatischer Aldehyde und Ketone überlagert sich das Fragmentierungsbild der Semicarbazidseitenkette dem der zugrundeliegenden Carbonylverbindungen. Ionisierung des Molekül-Ions erfolgt in erster Linie an dem Stickstoffatom, das die Stelle des Carbonylsauerstoffs vertritt. Das geringere Ionisierungspotential^{5,11,12,13)} des Stickstoffs begünstigt die Ladungsstabilisierung. Die Ablösung des ersten Elektrons wird zudem in den Semicarbazonen nicht wie in den Oximen ⁷⁾ durch die Nachbarschaft eines elektroaffinen Sauerstoffatoms erschwert. Die Ionen, die die Semicarbazidseitenkette unangetastet enthalten, entstehen daher analog den entsprechenden Fragmenten in den Spektren der Azomethine⁸; die bevorzugte Wanderung eines sekundären γ -Wasserstoffatoms¹⁰) im Zuge der McLafferty-Umlagerung⁹, die bei den Oximen⁷) nicht beobachtet werden konnte, wird hier wieder deutlich. Neben der McLafferty-Umlagerung sind in den Semicarbazonen wie in den Oximen und Azomethinen α - und γ -Spaltung die wichtigsten Abbauschritte des Alkylrestes.

Die Übersichtlichkeit der Spektren der Semicarbazone wird dadurch herabgemindert, daß sich die Fragmentierungen des Alkylrestes in der Semicarbazidseitenkette wiederholen können. α -Spaltung und Übertragung eines γ -H-Atoms an den Brückenkohlenstoff unter Verlust von Isocyansäure führen zu neuen Schlüsselbruchstücken. Darüber hinaus finden sich insbesondere in den Spektren aliphatischer Aldehyde und cyclischer Ketone Spitzen, deren Analyse durch Hochauflösung darauf hinweisen, daß die Ionisierung nicht ausschließlich am Brückenstickstoffatom erfolgt. Diese Fragmente sind vom Gesichtspunkt der Strukturanalyse her unerwünscht und versprechen für die Spektren der Semicarbazone keinen Vorzug gegenüber denjenigen der zugrundeliegenden Carbonylverbindungen.

Herrn R. G. Ross danken wir für die Aufnahme der Massenspektren und die exakten Massenmessungen, dem Deutschen Akademischen Austauschdienst, der National Science Foundation und dem National Institute of Health, US Public Health Service, für die finanzielle Förderung.

Beschreibung der Versuche

Die untersuchten Verbindungen wurden nach Literaturvorschriften¹⁹⁾ dargestellt. Die deuterierten Ketone sind schon an anderer Stelle^{10, 18a)} beschrieben worden. Die Massenspektren wurden mit dem Spektrometer MS-9 der Fa. Associated Electrical Industries (AEI), Manchester, Great Britain, aufgenommen, mit dem auch die Hochauflösungsanalyse einzelner Spitzen durchgeführt wurde. Alle Proben wurden unter Verwendung eines direkten Einlaßsystems in die etwa 200° heiße Ionenquelle eingebracht. Die Ionisierungsenergie betrug 70 eV. Unter diesen Bedingungen fanden sich in den Spektren keine Peaks, die auf eine thermische Zersetzung oder Umwandlung der Proben hindeuten, was von *Waight*²⁰⁾ bei Verwendung des geheizten Einlaßsystems ergaben ebenfalls unbefriedigende Resultate. Die Spektren zeigten keine der erwarteten Molekül-Ionen; die in ihnen enthaltenen Fragmente änderten ihre Intensität mit der Verweildauer in der Vorratskammer und mit deren Temperatur.

[37/66]

¹⁹⁾ A. I. Vogel, Practical Organic Chemistry, S. 344f, J. Wiley & Sons, New York 1962.

²⁰⁾ E. S. Waight, Proceedings of the 3rd Annual MS-9-Mass Spectrometer Users Meeting, April 1965, Manchester, Great Britain.